

Proudly sponsored by

**Welcome
to**

**Level 1 NCEA
Genomics workshop
for CB1.3
Auckland region**

**genomics
aotearoa**

Karakia

Tukua te wairua kia rere ki ngā taumata

Allow one's spirit to exercise its potential

**Hai ārahi i ā tātou mahi
Me tā tātou whai i ngā tikanga a rātou mā**

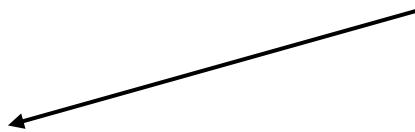
To guide us in our work as well as in our pursuit of our ancestral traditions

**Kia mau kia ita
Kia kore ai e ngaro
Kia pupuri
Kia whakamaua**

*Take hold and preserve it
Ensure it is never lost
Hold fast.
Secure it.*

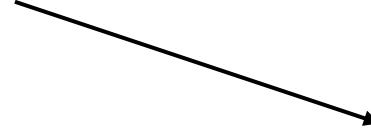
Kia tina! TINA! Hui e! TĀIKI E!

Draw together! Affirm!


CB1.3 Essentials and Beyond: Teach Today and for Tomorrow

**Demonstrate understanding of
genetic variation in relation to an
identified characteristic**

Dr Wilda Laux


CB 1.3 / AS 92022 Demonstrate understanding of genetic variation in relation to an identified characteristic

Genetic variation:

What, why

Source = how: mutation, meiosis, fertilisation, **small population size, different rates of survival, migration, non-random mating**

Gene tracking methods:

Why: Genetic relationships
(**gene therapy, agriculture, species conservation...**)

How: **use genetic marker / specific DNA sequences to produce pedigree, phylogenetic tree**

AS92022 Chem & Bio 1.3 changes

From

Explanatory Note 3

For the purpose of this achievement standard, a gene tracking methodology identifies the presence or absence of a gene, genetic marker, or DNA sequence within an individual or population.

Examples of a gene tracking methodology include:

- Phylogenetic trees or pedigree charts
- genetic markers
- specific DNA sequences
- Punnett squares.

To

Explanatory Note 3

For the purpose of this achievement standard, a gene tracking methodology identifies the presence or absence of one or more genes, genetic markers, or DNA sequences within an individual or population.

TODAY

Genetic variation

What
How
Why
When
Where

Source and nature of Genetic variation

For individuals/populations

Gene tracking methods

Between individuals/populations

Determine relationships

What
How
Why
When
Where

Level 1

TOMORROW

Gene expression

Genetic transfer

Human evolution

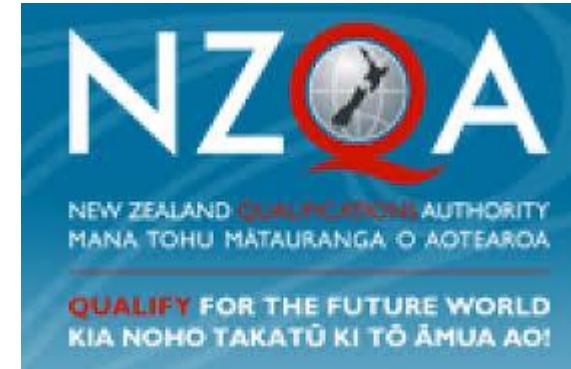
Speciation

Level 2-3

TEACH CONCEPTS

Teach for Tomorrow

Contexts and Connect

Proudly sponsored by

Lesson	Lesson title	Learning outcomes	Strategies	Suggested Resources
1	Introduction to living things	Introduction to genetics Review the different characteristics of an organism	Motivational video: while the video runs, comment/pause on areas of Biology and keywords used in this unit throughout the video and focus on the main ideas/keywords related to genetics/genomics Review 'atom to organism' in the context of a chosen species that you will use for later lessons, e.g., Tara <u>iti</u> (atom, molecule, cell, tissue, organ, organ system, organism = Tara <u>iti</u>) Review MRSGREN, the 7 characteristics of living things (reiterate that respiration is not breathing)	https://www.youtube.com/watch?v=B_PQ8qYtUL0&t=75s (introduction to genetics) https://chem.libretexts.org/Under_Construction/iLearn_Collaborative/Copy_of_DCW-Biology-Semester-2_Curated.imscc/01%3A_Course_Content/03%3A_Unit_9%3A_Humans/00%3A_Week_10%3A_Homeostasis/01%3A_Levels_of_Organization (atom to organism flowchart) Complete task 3 of Appendix 1
2	Suggestion: Looking at animal vs plant cells	Differentiate between animal and plant cells	PRACTICAL session: microscopy with onion cell vs animal slides	Microscopes, onions, slides, coverslips, iodine, water, forceps, prepared animal tissue slides https://hi-static.z-dn.net/files/d5d/69a5d971d7970df3681c933cd0df845c.doc <u>WS_Onion cell lab.doc</u>

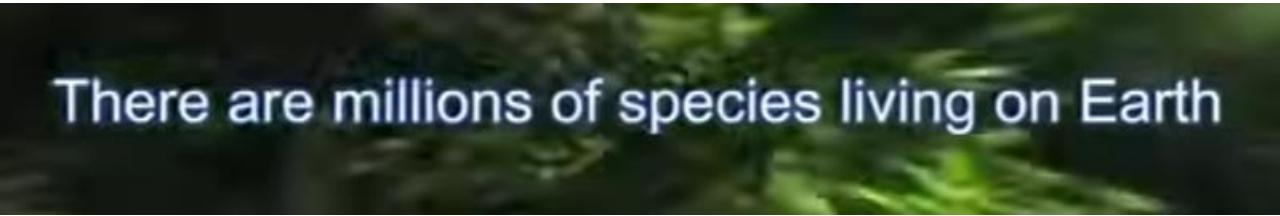
GENETICS TO GENOMICS

Individual genes

Passing down from parents to offspring (Punnett squares, pedigree, Mendelian principles)

Applications: medicine, agriculture, evolutionary biology

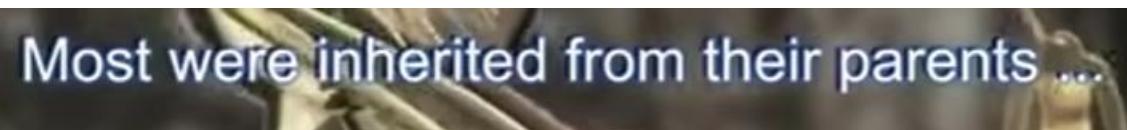
All genes (coding vs non-coding DNA, regulatory sequences) and their interactions with each other and the environment (**DNA sequencing, bioinformatics, comparative genomics**)


Applications: agriculture, gene therapy, forensics, evolution, ...)
COLLABORATION WITH UoA

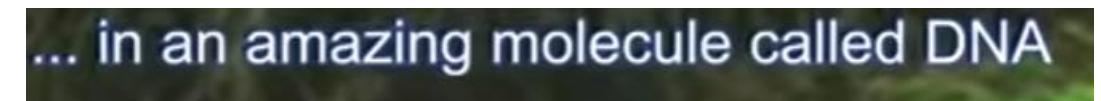
CB1.3 Essentials and Beyond: Teach **Today** and for Tomorrow

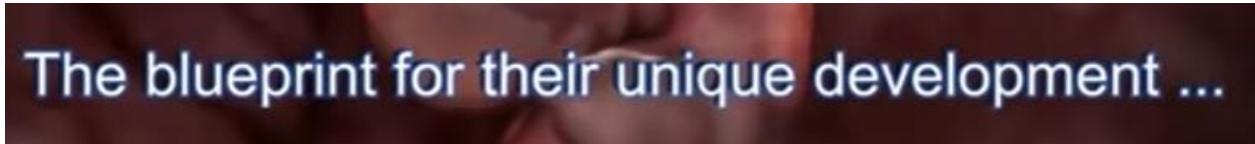
GENETICS

https://www.youtube.com/watch?v=B_PQ8qYtUL0&t=75s



There are millions of species living on Earth


Species live in communities within an ecosystem


They possess millions of different traits!

Most were inherited from their parents ...

... in an amazing molecule called DNA

The blueprint for their unique development ...

CB1.3 Essentials and Beyond: Teach Today and for Tomorrow

Motivational video to introduce Biology

Atom to organism – organisms of choice (local curriculum), e.g., Tara iti, Gentoo penguin (BEANZ)

Living vs non-living (MRSGREN). Use chosen organism vs non-living. (Opportunity to do microscopy)

Classification systems in Biology (dichotomous keys, Taxonomy –apply to chosen organism) (L3)

Levels of organisation in an ecosystem (L3)

Relationships within the ecosystem (L3)

Adaptations of organisms (use chosen organism, adaptations to meet its niche) (L2, L3)

The wonders of DNA (karyotype, DNA, chromosome, gene, allele, base pairing rule)

CB1.3 Essentials and Beyond: Teach Today and for Tomorrow

The central dogma of Biology (DNA to protein, codon table)

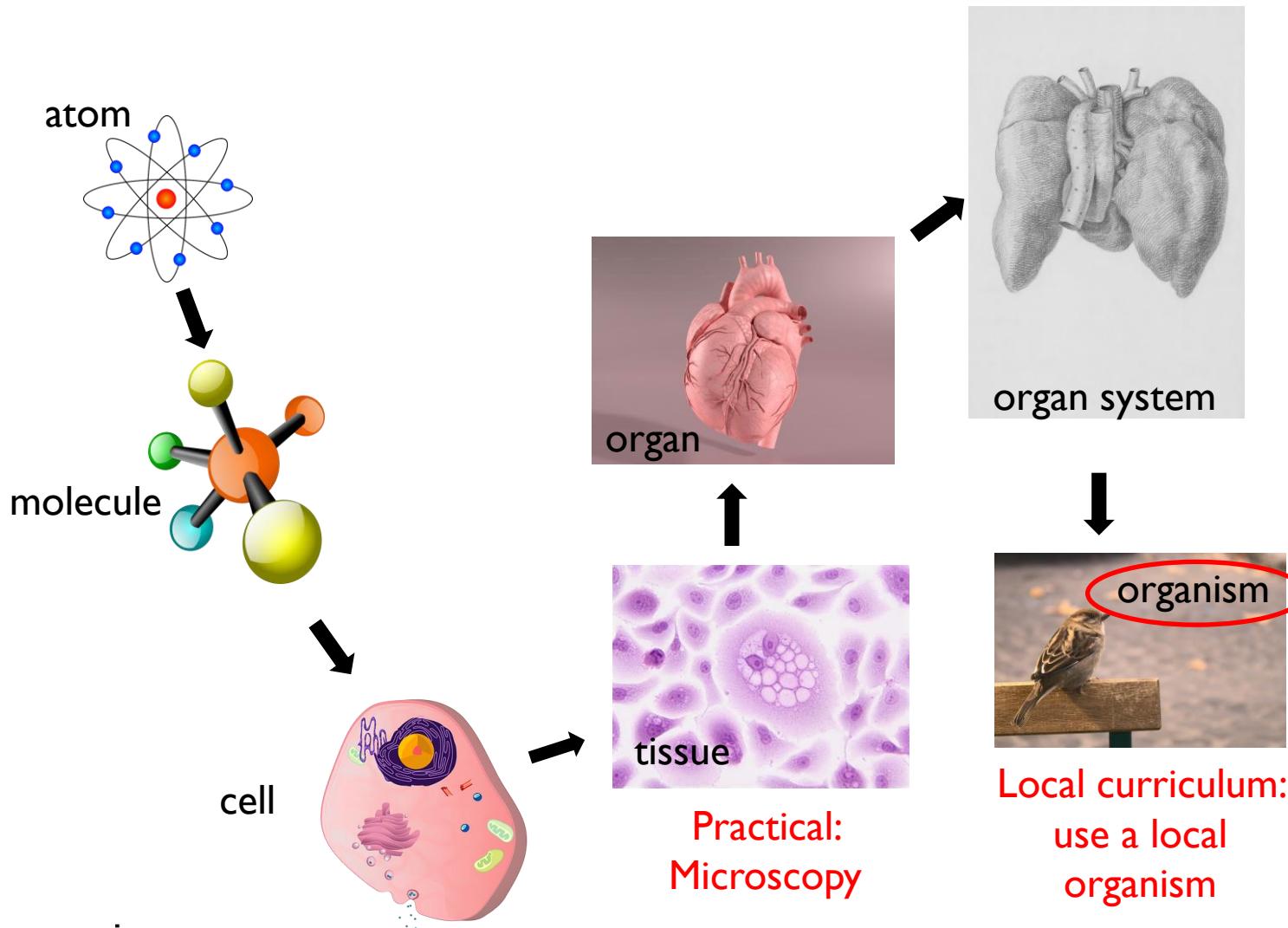
Types of variation (inherited vs acquired)

Sources of variation (meiosis (vs mitosis), fertilisation, mutation) in sexual reproduction **(L2)**

Looking through the Genbank database **(L3)**

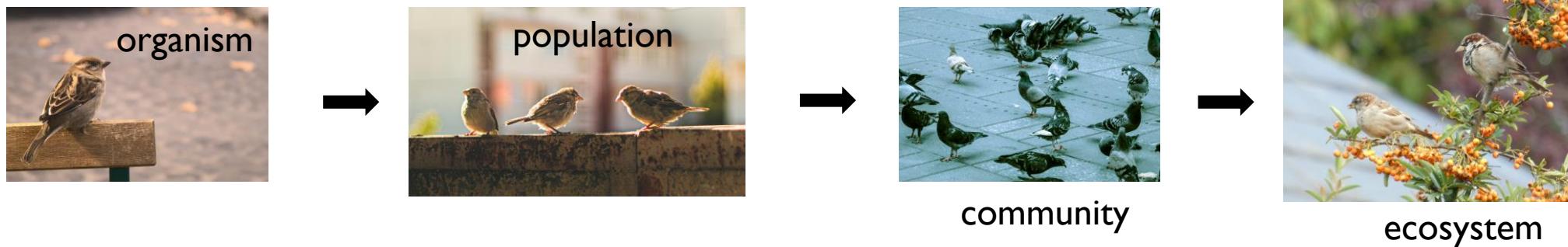
Predict inheritance (Punnett squares)

Other sources of variation affecting populations: natural selection, genetic drift, migration, non random mating **(L2, L3)**


Pedigree charts (tracking through generations)

Use genetic information to compare sequences between species to make a phylogenetic tree

Gene tracking for different purposes, e.g., forensics, conservation, gene therapy...)

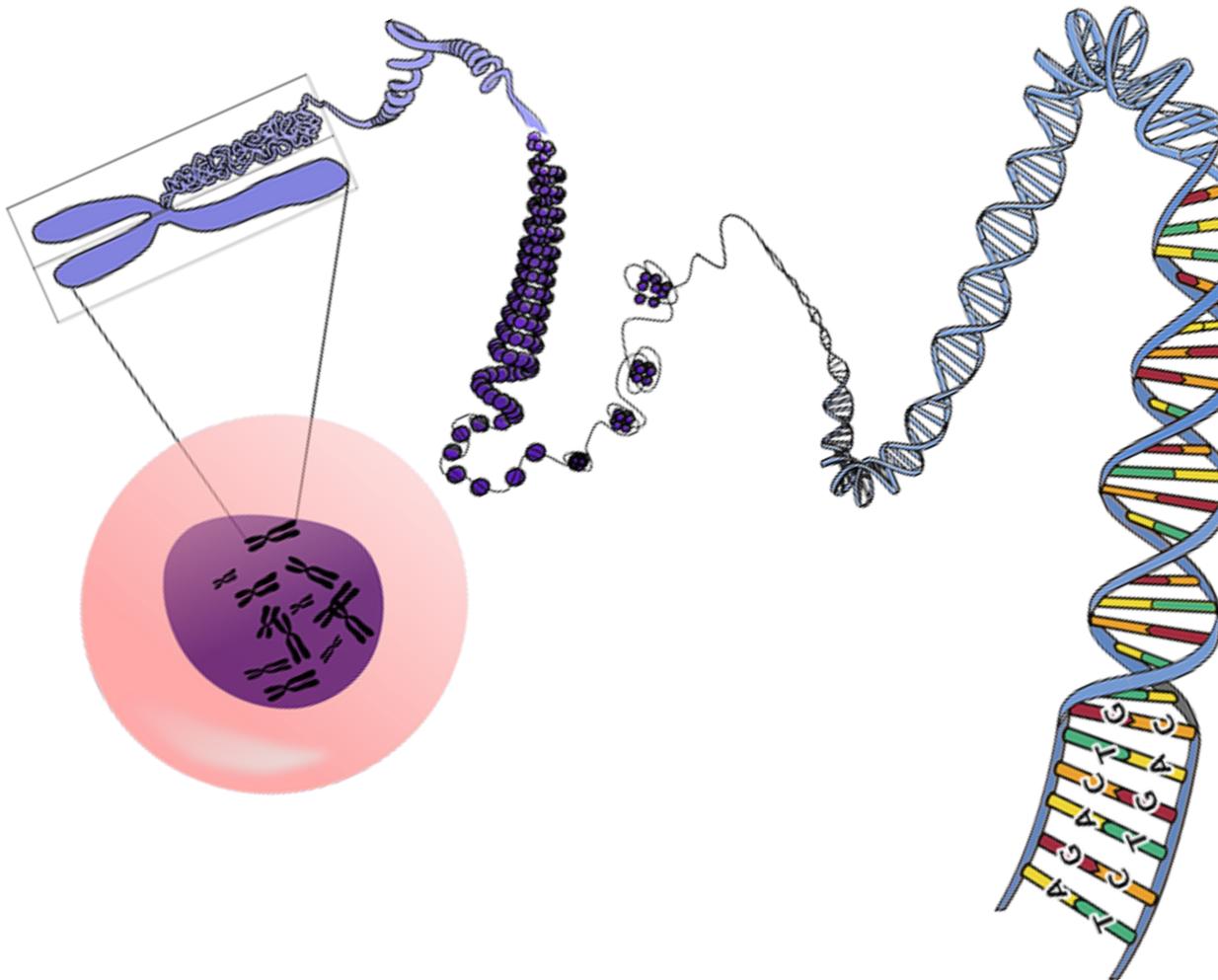

The story of life!

M
R
S
G
R
E
N

More on classification:
Dichotomous keys
Taxonomy
Use local organisms

The story of life!

Relationships within the ecosystem (use context of local curriculum)
Adaptations lead to changes in DNA which are inherited


DNA structure

DNA, gene, alleles,
chromosome, trait,
nucleotide

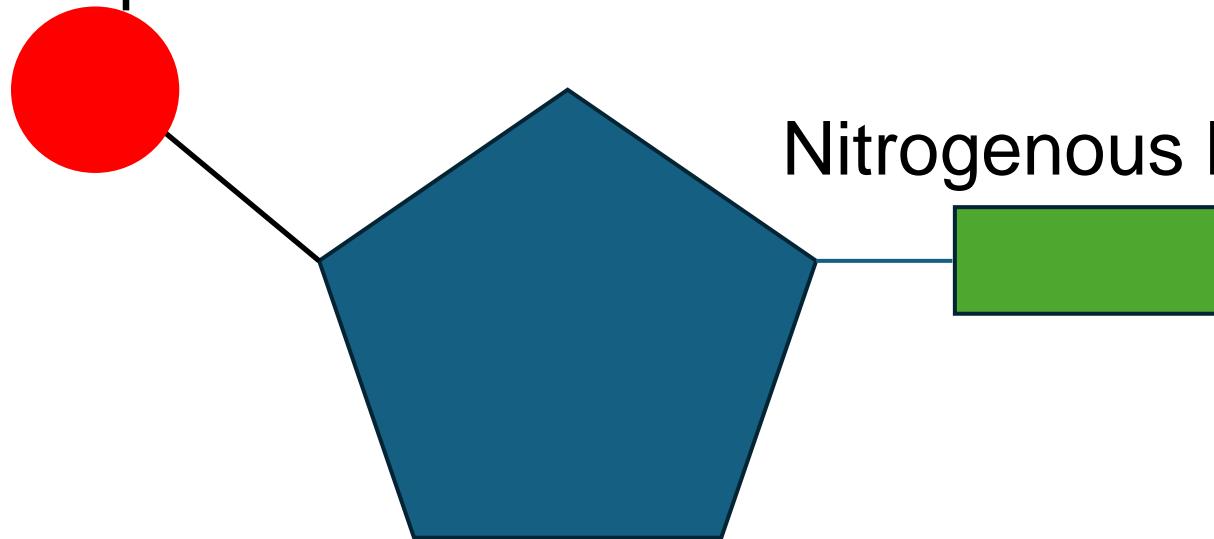
<https://pixabay.com/illustrations/dna-genetics-molecule-biology-5695421/>

<https://pixabay.com/vectors/genetics-chromosomes-rna-dna-156404/>

Each species has different numbers of chromosomes

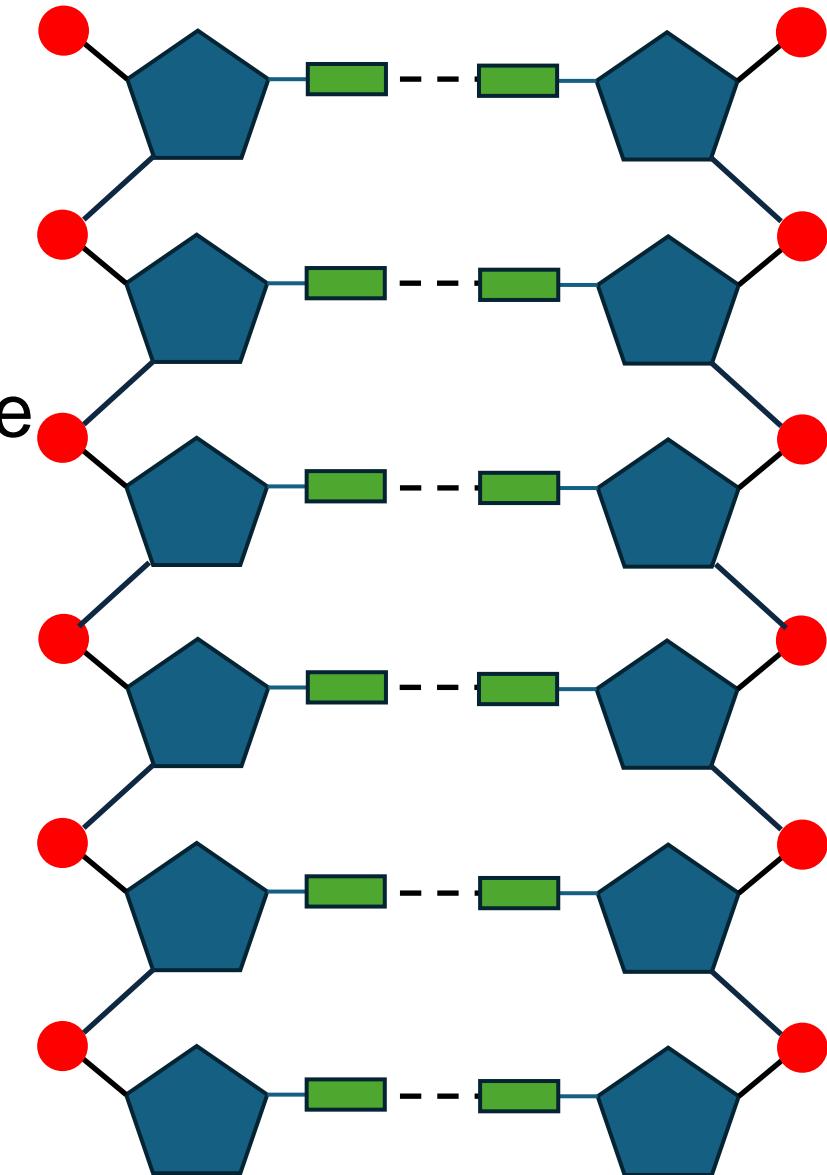
Each human cell:

3.2 billions (3200 millions) nucleotides (human genome)


DNA is about 2 m long

About 20 000 protein-coding genes (1.5% of the entire genome)

Photos from pixabaycom


Nucleotide

phosphate

Sugar = deoxyribose

Nitrogenous base

DNA to protein – the central dogma

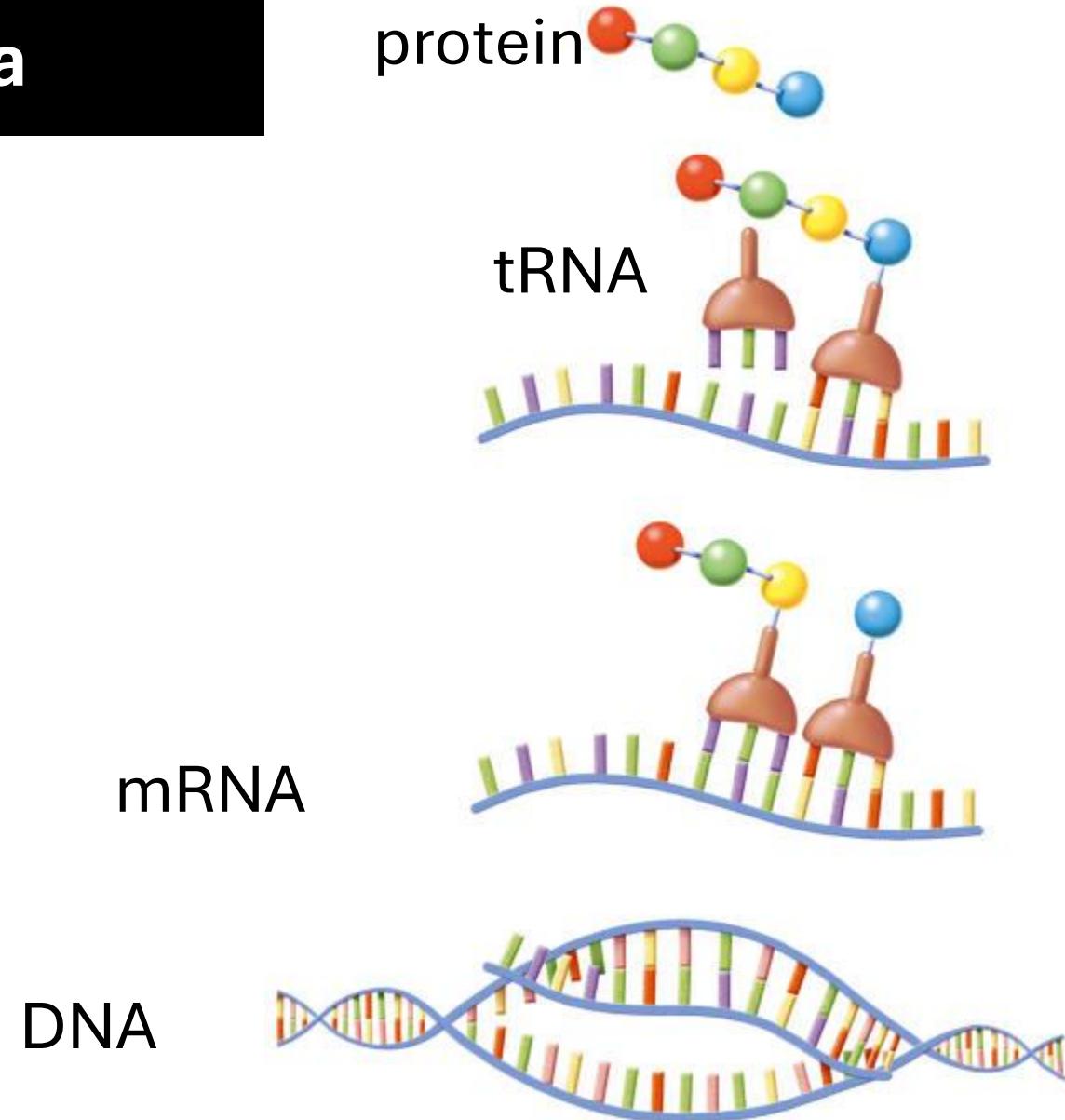
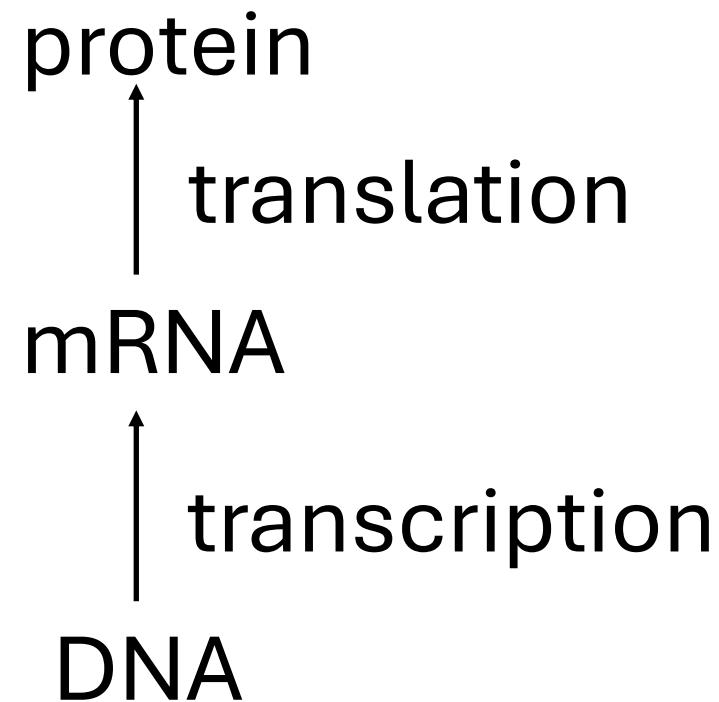
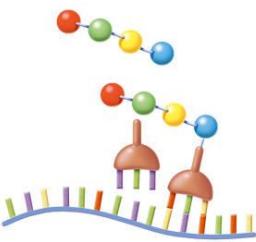
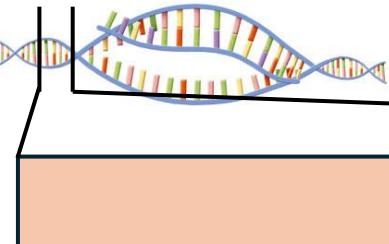




Image from Gettyimages

protein


Gene - section of DNA

Genome – all genes

contained in an organism

mRNA

DNA

Gene 1

DNA

Exon 1

Intron 1

Exon 2

Intron 2

Exon 3

Intron 3

DNA

promoter

transcription

↓ +polyA tail at 3' and CAP at 5'

5' CAP

polyA tail 3'

Exon 1

Intron 1

Exon 2

Intron 2

Exon 3

Intron 3

Pre mRNA

CAP+ ATG

TAA/TGA/TAG+polyA tail

Exon 1

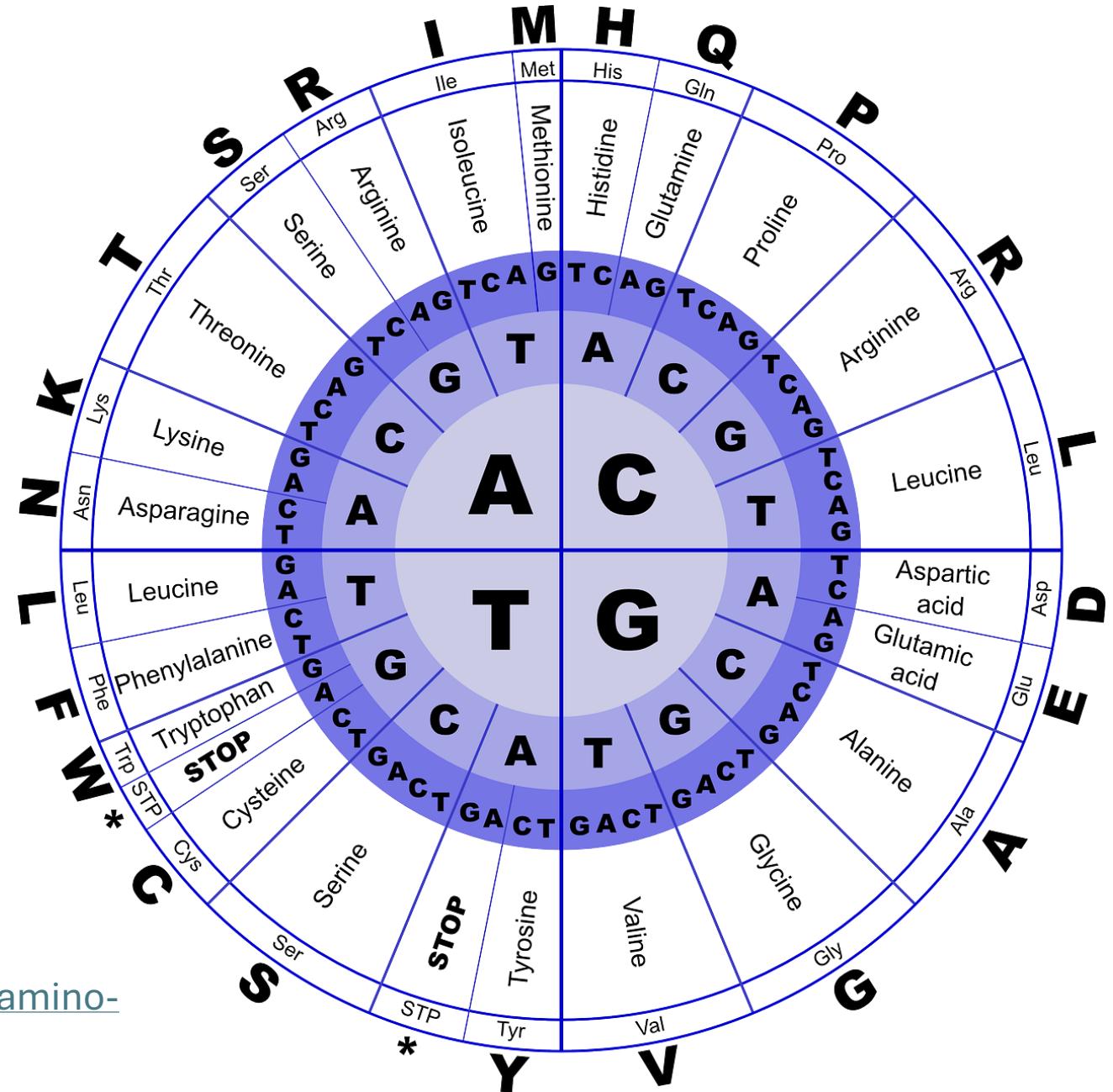
Exon 2

Exon 3

translation

mRNA

protein

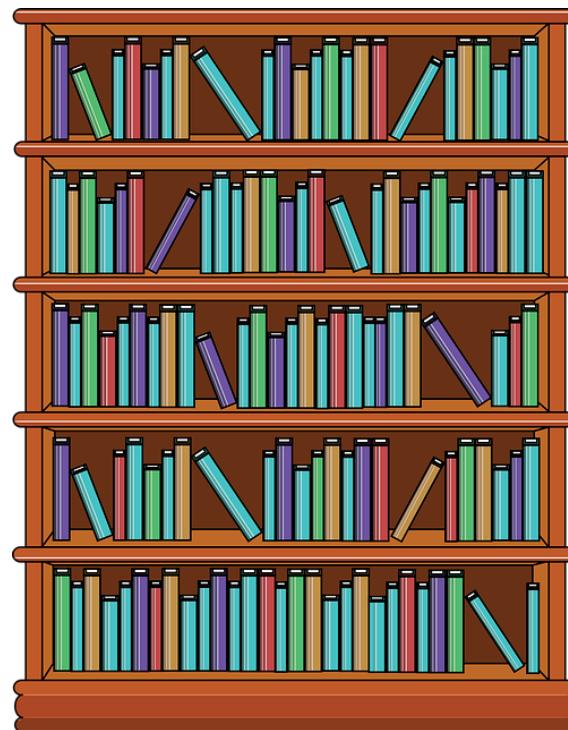

splicing

Codon chart

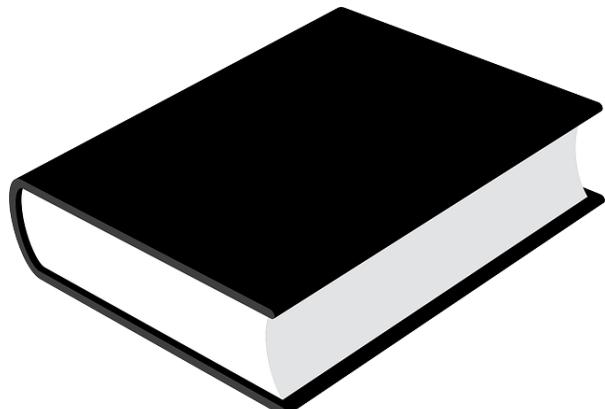
5' ACA CAT GAG TGC GCC ACC 3' DNA

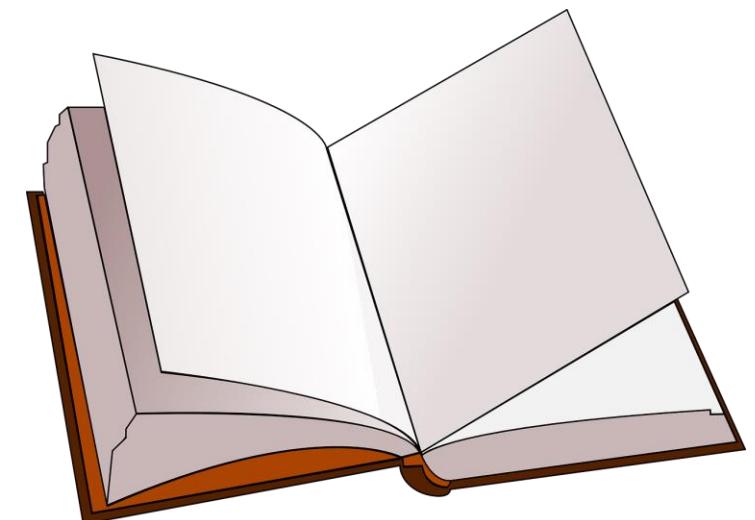
RNA
protein

<https://pixabay.com/vectors/dna-amino-acids-biology-code-152135/>

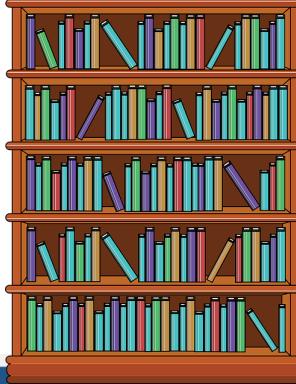

Variations

- Sources: (meiosis, fertilisation, mutation) in sexual reproduction
- Where do we store all the various genes we discover?


Understanding
gene versus
genome and
where their
information is
stored


Genbank

One book = Organism = genome
Complete set of genes in cell/organism



One chapter = one chromosome

One page = one gene

<https://www.ncbi.nlm.nih.gov/genbank/>

NIH National Library of Medicine
National Center for Biotechnology Information

GenBank Nucleotide Search

GenBank Overview

What is GenBank?

GenBank® is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences (*Nucleic Acids Research*, 2013 Jan;41(D1):D36-42). GenBank is part of the [International Nucleotide Sequence Database Collaboration](#), which comprises the DNA DataBank of Japan (DDBJ), the European Nucleotide Archive (ENA), and GenBank at NCBI. These three organizations exchange data on a daily basis.

A GenBank release occurs every two months and is available from the [ftp site](#). The [release notes](#) for the current version of GenBank provide detailed information about the release and notifications of upcoming changes to GenBank. Release notes for [previous GenBank releases](#) are also available. GenBank growth [statistics](#) for both the traditional GenBank divisions and the WGS division are available from each release.

An [annotated sample GenBank record](#) for a *Saccharomyces cerevisiae* gene demonstrates many of the features of the GenBank flat file

GenBank Resources

[GenBank Home](#)
[Submission Types](#)
[Submission Tools](#)
[Search GenBank](#)
[Update GenBank Records](#)

Bank of variants' data

NIH > National Library of Medicine
National Center for Biotechnology Information

GenBank ClinVar Search

GenBank ▾ Submit ▾ Genomes ▾ WGS ▾ Metagenomes ▾ TPA ▾ TSA ▾ INSDC ▾ Documentation ▾ Other ▾

GenBank Overview

What is GenBank?

GenBank® is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences ([Nucleic Acids](#)

GenBank Resources

[GenBank Home](#)
[Submission Types](#)
[Submission Tools](#)

GenBank

GenBank ▾

BLAST®

GenBank

What is Ge

GenBank® is t

Research, 201

the DNA DataB

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. [Learn more](#)

NEWS

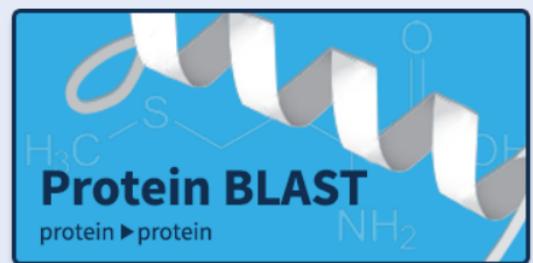
BLAST+ 2.15.0 is here!

We have included two exciting new features in the latest BLAST+ release

Tue, 28 Nov 2023

[More BLAST news...](#)

Web BLAST



blastx

translated nucleotide ▶ protein

tblastn

protein ▶ translated nucleotide

BLAST Genomes

Enter organism common name, scientific name, or tax id

Search

blastn

blastp

blastx

tblastn

tblastx

Standard Nucleotide BLAST

BLASTN programs search nucleotide databases using a nucleotide query. [more...](#)

Enter Query Sequence

Enter accession number(s), gi(s), or FASTA sequence(s) [?](#) [Clear](#)Query subrange [?](#)

From

To

Or, upload file

 No file chosen [?](#)

Job Title

Enter a descriptive title for your BLAST search [?](#) Align two or more sequences [?](#)

Choose Search Set

Database

Standard databases (nr etc.): rRNA/ITS databases Genomic + transcript databases Betacoronavirus Experimental data
 Core nucleotide database **NEW**

 [?](#)Organism
Optional Enter organism name or id--completions will be suggested exclude [Add organism](#)Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown [?](#)

BLAST® » blastn suite

Standard Nucleotide BLAST

blastn

blastp

blastx

tblastn

tblastx

BLASTN programs search nucleotide databases using a nu

Enter Query Sequence

Enter accession number(s), gi(s), or FASTA sequence(s) [?](#) [clear](#)

```
accggccgaga ccgcgtccgc cccgcgagca cagagcctcg ccttgccga tccggccccc  
61 gtccacaccc gcccgcagct caccatggat gatgatatcg ccgcgcgtcg ctgcgacaac  
121 ggctccggca tgtgcaaggc cggcttcgcg ggcgacgatg ccccccgggc cgtcttcccc  
181 tccatcgtgg ggcgcggccag gcaccagggc gtgtatggtgg gcatgggtca
```

Query subrange [?](#)

From

To

Or, upload file

No file chosen

[?](#)

Job Title

Enter a descriptive title for your BLAST search [?](#)

Align two or more sequences [?](#)

Choose Search Set

Database

Standard databases (nr etc.): rRNA/ITS databases Genomic + transcript databases Betacor

Result of sequence alignment

Descriptions Graphic Summary Alignments Taxonomy

Sequences producing significant alignments Download Select columns Show 100

select all 100 sequences selected [GenBank](#) [Graphics](#) [Distance tree of results](#) [MSA Viewer](#)

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
<input checked="" type="checkbox"/>	Homo sapiens actin beta (ACTB), mRNA	Homo sapiens	1330	1330	100%	0.0	100.00%	1812	NM_001101.5
<input checked="" type="checkbox"/>	Homo sapiens mRNA for beta actin variant, clone: HRC08987	Homo sapiens	1330	1330	100%	0.0	100.00%	1656	AK225414.1
<input checked="" type="checkbox"/>	Homo sapiens mRNA for beta actin variant, clone: KAT00430	Homo sapiens	1330	1330	100%	0.0	100.00%	1643	AK223055.1
<input checked="" type="checkbox"/>	Homo sapiens mRNA for beta actin variant, clone: HRC07191	Homo sapiens	1330	1330	100%	0.0	100.00%	1833	AK222925.1
<input checked="" type="checkbox"/>	Homo sapiens cDNA FLJ26647 fis, clone MPE04710, highly similar to Actin, cytoplasmic 1	Homo sapiens	1330	1330	100%	0.0	100.00%	1805	AK130157.1

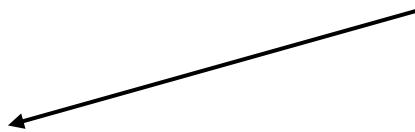
Homo sapiens actin beta (ACTB), mRNA

Sequence ID: [NM_001101.5](#) Length: 1812 Number of Matches: 1

Range 1: 1 to 720 [GenBank](#) [Graphics](#)

▼ [Next Match](#) ▲ [E](#)

Score	Expect	Identities	Gaps	Strand
1330 bits(720)	0.0	720/720(100%)	0/720(0%)	Plus/Plus
Query 1	ACCGCCGAGACCGCGTCCGCCCGCGAGCACAGAGCCTGCCCTTGGCGATCCGCCGCC	60		
Sbjct 1	ACCGCCGAGACCGCGTCCGCCCGCGAGCACAGAGCCTGCCCTTGGCGATCCGCCGCC	60		
Query 61	GTCCACACCCGCCAGCTACCATGGATGATGATATGCCGCCGCTCGTCGACAAC	120		
Sbjct 61	GTCCACACCCGCCAGCTACCATGGATGATGATATGCCGCCGCTCGTCGACAAC	120		
Query 121	GGCTCCGGCATGTGCAAGGCCGGCTCGCGGGCGACGATGCCGCCGGGCCGTCTCCCC	180		
Sbjct 121	GGCTCCGGCATGTGCAAGGCCGGCTCGCGGGCGACGATGCCGCCGGGCCGTCTCCCC	180		
Query 181	TCCATCGTGGGCGCCCAAGGCACCAGGGCGTGATGGTGGCATGGTCAGAAGGATTCC	240		
Sbjct 181	TCCATCGTGGGCGCCCAAGGCACCAGGGCGTGATGGTGGCATGGTCAGAAGGATTCC	240		
Query 241	TATGTGGCGACGAGGCCAGAGCAAGAGAGGCATCCTCACCCCTGAAGTACCCCATCGAG	300		
Sbjct 241	TATGTGGCGACGAGGCCAGAGCAAGAGAGGCATCCTCACCCCTGAAGTACCCCATCGAG	300		
Query 301	CACGGCATCGTACCAACTGGGACGACATGGAGAAAATCTGGCACCAACACCTTCTACAAT	360		
Sbjct 301	CACGGCATCGTACCAACTGGGACGACATGGAGAAAATCTGGCACCAACACCTTCTACAAT	360		
Query 361	GAGCTCGTGTGGCTCCGGAGGAGCACCCCGTGCTGCTGACCGAGGCCCTGAACCCC	420		
Sbjct 361	GAGCTCGTGTGGCTCCGGAGGAGCACCCCGTGCTGCTGACCGAGGCCCTGAACCCC	420		
Query 421	AAGGCCAACCGCGAGAAGATGACCCAGATCATGTTGAGACCTTCAACACCCAGCCATG	480		
Sbjct 421	AAGGCCAACCGCGAGAAGATGACCCAGATCATGTTGAGACCTTCAACACCCAGCCATG	480		
Query 481	TACGTTGCTATCCAGGCTGTGCTATCCCTGTACGCCCTGGCCGTACCACTGGCATCGTG	540		



Other sources of variations

Variations affecting populations:

- natural selection,
- genetic drift,
- migration,
- non-random mating

CB 1.3 / AS 92022 Demonstrate understanding of genetic variation in relation to an identified characteristic

Genetic variation:

What, why

Source = how: mutation, meiosis, fertilisation, small population size, different rates of survival, migration, non-random mating

Gene tracking methods:

Why: To identify genetic relationships (several contexts)

How: use genetic marker / specific DNA sequences to produce pedigree, phylogenetic tree, ...

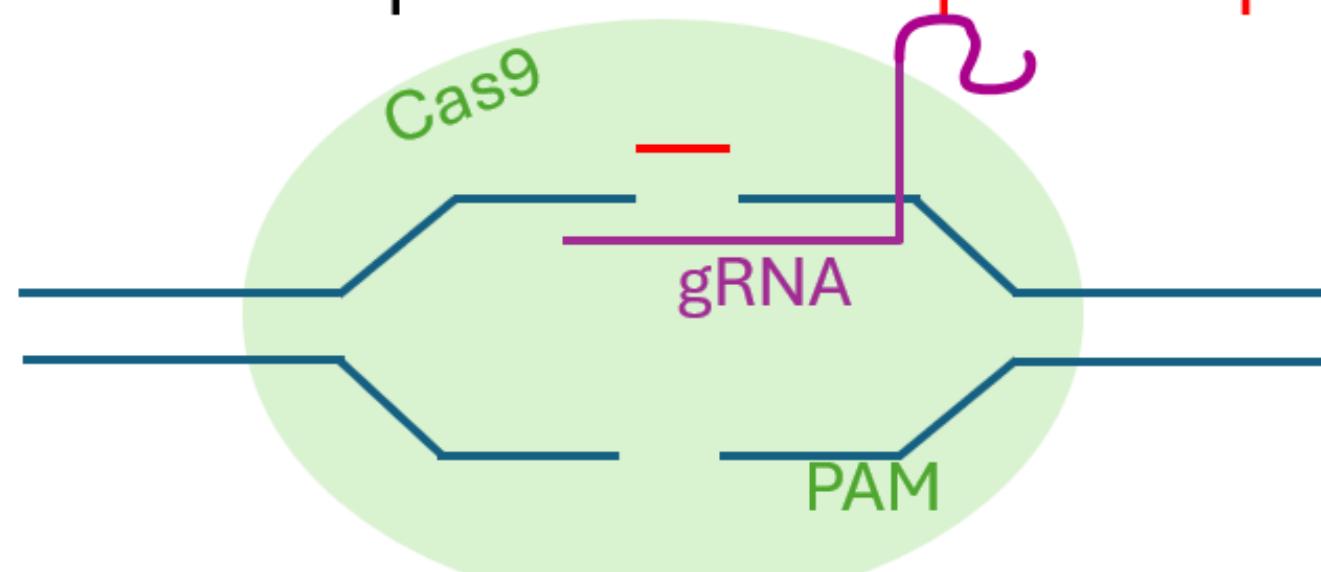
TRACKING genes and comparing genomes

- Forensics
- Genetic relationships (Pedigrees, Phylogenetic trees)
- Genetic testing/screening
- Gene therapy
- Precision medicine
- Conservation

**GENOMICS in
CONTEXT**

Genetic testing to beat cancer

Made by Aotearoa Science Agency and funded by Genomics Aotearoa.


- <https://www.rnz.co.nz/programmes/what-if-genomics-in-aotearoa/story/2018952807/what-if-we-can-use-genetic-testing-to-beat-cancer>

GENE THERAPY

- Genomics - whole genome sequencing
- Normal vs variants
- Knowledge of variants – correct, replace, shutdown expression....
- Viral vectors vs CRISPR/Cas 9 system vs RNAi (RNA interference)

CRISPR-Cas 9 system

- Gene editing tool used to edit the genome, so you can correct or introduce a mutation
- Cas9 enzyme, guide RNA (gRNA) complementary to target genomic region and takes Cas 9 there, genomic region of interest, repair template (short sequence)
- Homology-directed repair with the repair template

Gene therapy – Boston Children's hospital

The screenshot shows the homepage of the Boston Children's Hospital Gene Therapy Program. At the top, the hospital's logo and name are displayed, along with a navigation bar for patients, healthcare professionals, and researchers. A search bar and links for careers and donations are also present. The main content area features a large image of a young boy smiling, overlaid with a graphic of a cell. The text on the left side reads "Gene Therapy Program" and "FDA-Approved Gene Therapies". The URL <https://www.childrenshospital.org/programs/gene-therapy-program> is visible at the bottom of the page.

Boston Children's Hospital

MyChildren's Patient Portal | Pay Your Bill | Ways to Help | Global Services

Patients & Families ▾

Healthcare Professionals ▾

Researchers ▾

Home | Programs | Gene Therapy Program | FDA-Approved Gene Therapies

Gene Therapy Program

FDA-Approved Gene Therapies

<https://www.childrenshospital.org/programs/gene-therapy-program>

SICKLE CELL ANEMIA (SCA)

- Casgevy, a cell-based gene therapy, approved for the treatment of SCA in patients 12 y+ with recurrent vaso-occlusive crises.
- First FDA-approved therapy utilizing CRISPR/Cas9 targeted genome editing technology.
- Patients' hematopoietic (blood) stem cells are modified by CRISPR/Cas9 technology (remove, add, replace).
- Modified blood stem cells are transplanted back into the patient where they attach and multiply within the bone marrow and increase the production of fetal hemoglobin (HbF)

<https://www.gov.uk/government/news/mhra-authorises-world-first-gene-therapy-that-aims-to-cure-sickle-cell-disease-and-transfusion-dependent-thalassemia>

Facioscapulohumeral muscular dystrophy (FSHD)

- muscle-wasting disease
- Overexpression of DUX4 gene coding for human double homeobox 4 (DUX4) protein, toxic to muscle
- No currently approved therapy
- RNAi will knockdown translation of DUX4

Kiwi patient first in world to test new gene therapy

1 July 2024

Health and medicine, Faculty of Medical and Health Sciences

The first person in the world has just been dosed in a New Zealand trial of a revolutionary new genetic therapy.

<https://www.auckland.ac.nz/en/news/2024/07/01/First-person-gets-new-gene-therapy.html>

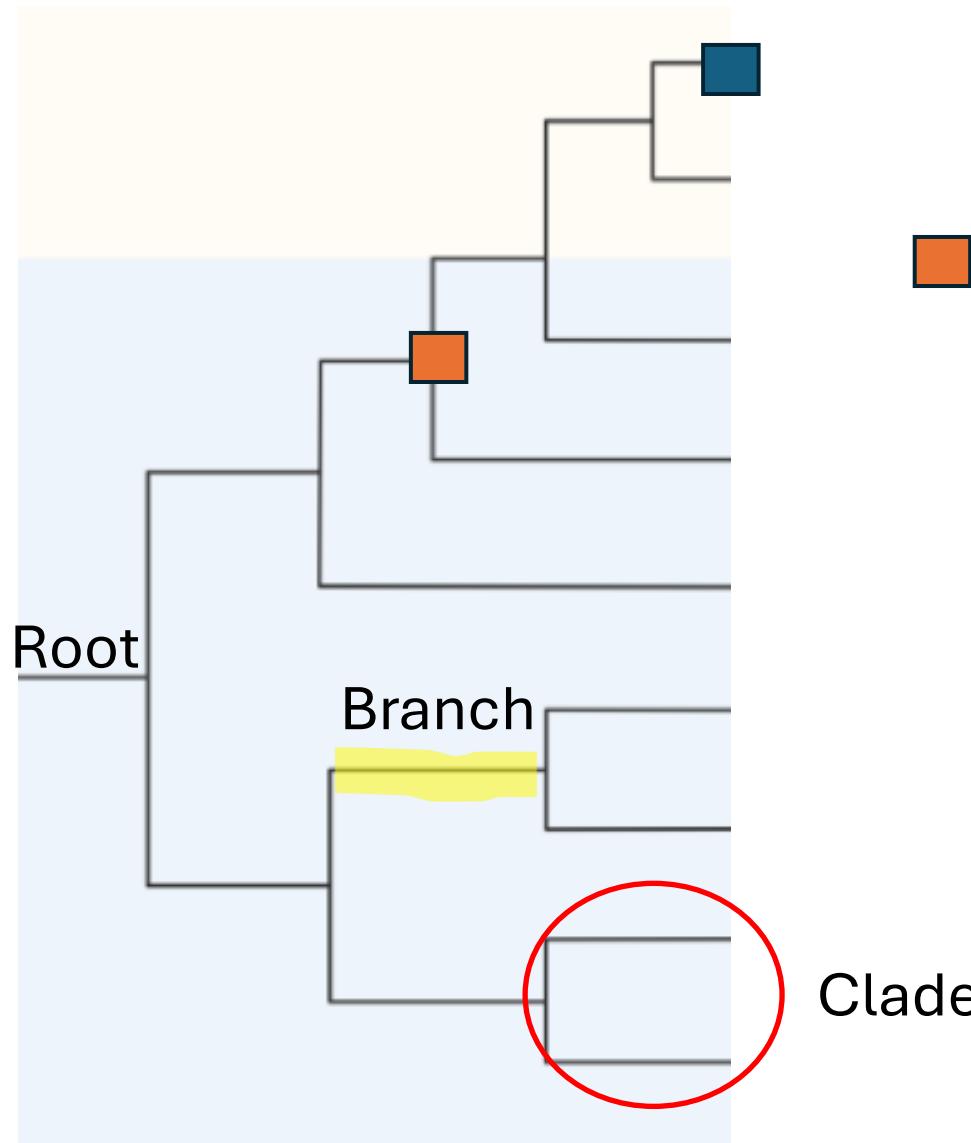
Phylogenetic trees

Diagram representing the evolutionary relationships among many species. It shows how different organisms are related through common ancestors and shows the branching patterns of evolution.

Generated using information, e.g., genetic information that is common and different between species.

Classifies species into groups based on evolutionary relationships rather than physical characteristics

Generated using genetic, morphological or fossil evidence

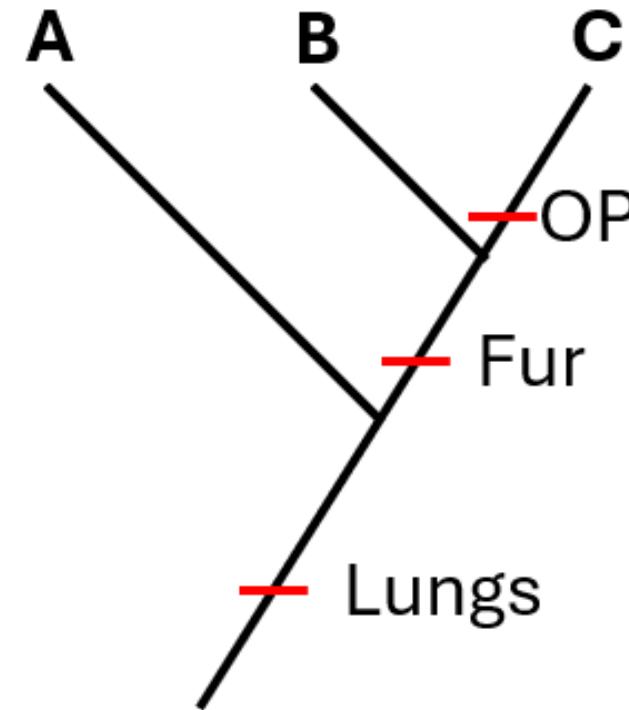

Phylogenetic tree - terminology

ROOT: connects the original most common ancestor among all species

BRANCH: when root undergoes speciation

NODES: Points of common ancestors for the following branches

CLADE: groups of organisms believed to have come from a common ancestor



Cladogram – simple version of a phylogenetic tree

Shows the branching order of species without necessarily indicating the exact timing of evolutionary events.

Shows the relative recency of common ancestors and the emergence of traits.

Does not represent the actual time scale or the amount of evolutionary change.

The making of a cladogram

1. Make a table of characters, using the following key:

1 - shows that a species has the character under study

0 - shows that the species does not have the character under study

Derived characters	Species		
		A	B
Lungs	1	1	1
Fur	0	1	1
Opposable thumbs	0	0	1

2. Use the principle of **maximum parsimony** to generate the simplest possible tree with the fewest number of evolutionary changes.

The making of a cladogram

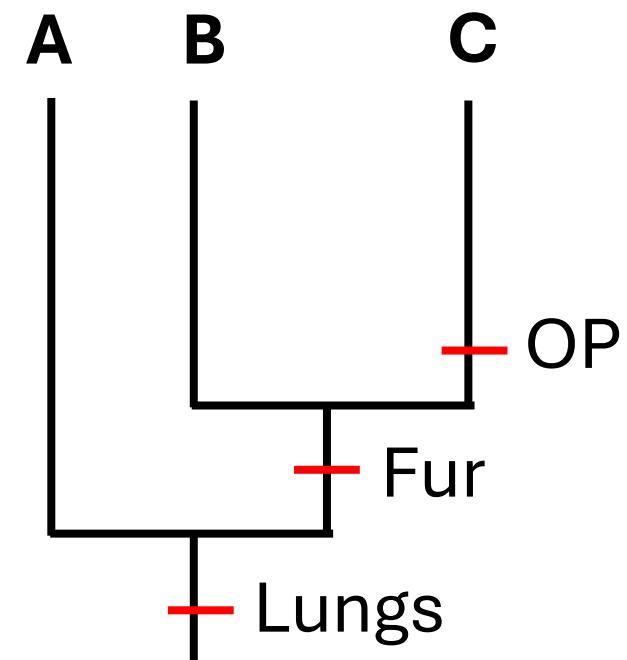
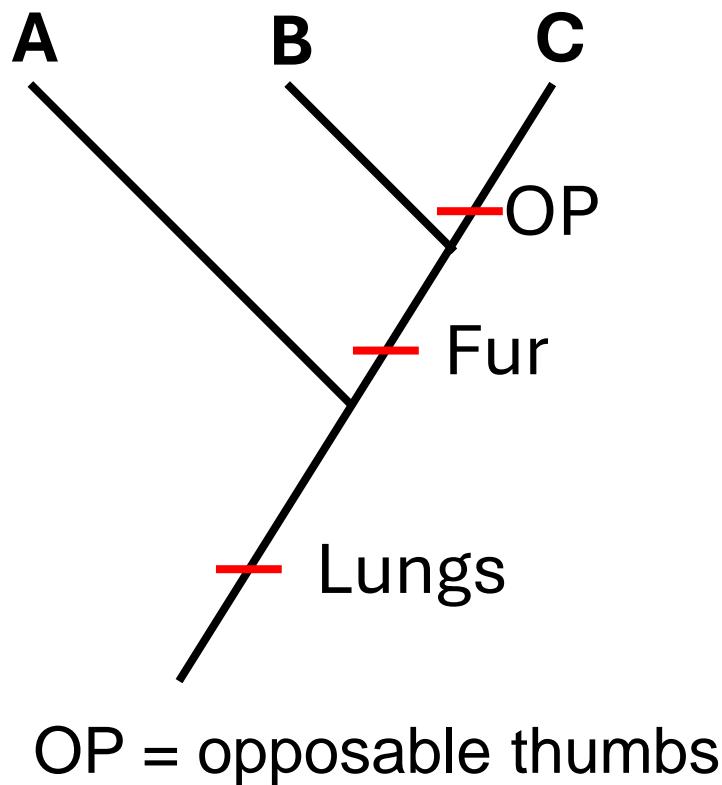
Derived characters	Species			
	Lungs	A	B	C
		1	1	1
		0	1	1
	Opposable thumbs	0	0	1

3. Rearrange the table with the least common character at the top row and the most common character (oldest) at the bottom row.

Derived characters	Species			
	Opposable thumbs	A	B	C
		0	0	1
		0	1	1
	Lungs	1	1	1

The making of a cladogram

Derived characters	Species			
	Opposable thumbs	A	B	C
		0	0	1
		0	1	1
	Lungs	1	1	1



4. Start the tree with the most common character near the root and each new branch is the evolution of a new character. On the left, place the species with the least shared characters.

The making of a cladogram

Derived characters		Species		
		A	B	C
	Opposable thumbs	0	0	1
	Fur	0	1	1
	Lungs	1	1	1

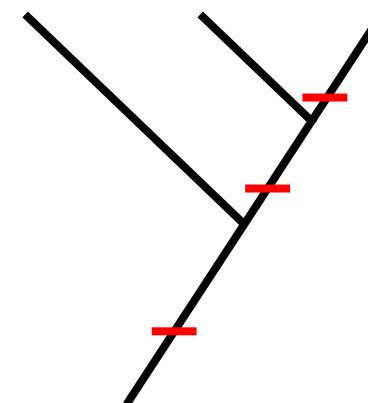
Root = the most common character
Each Branch = evolution of a new character
Left = species with the least shared characters
Right = species with the most shared characters

To make a cladogram

Derived characters	Species			
	Retractable claws	Dog	Rabbit	Cat
		0	0	1
		1	1	1
	Canines	1	0	1

1. Rearrange the table with the least common character at the top row and the most common character (oldest) at the bottom row.

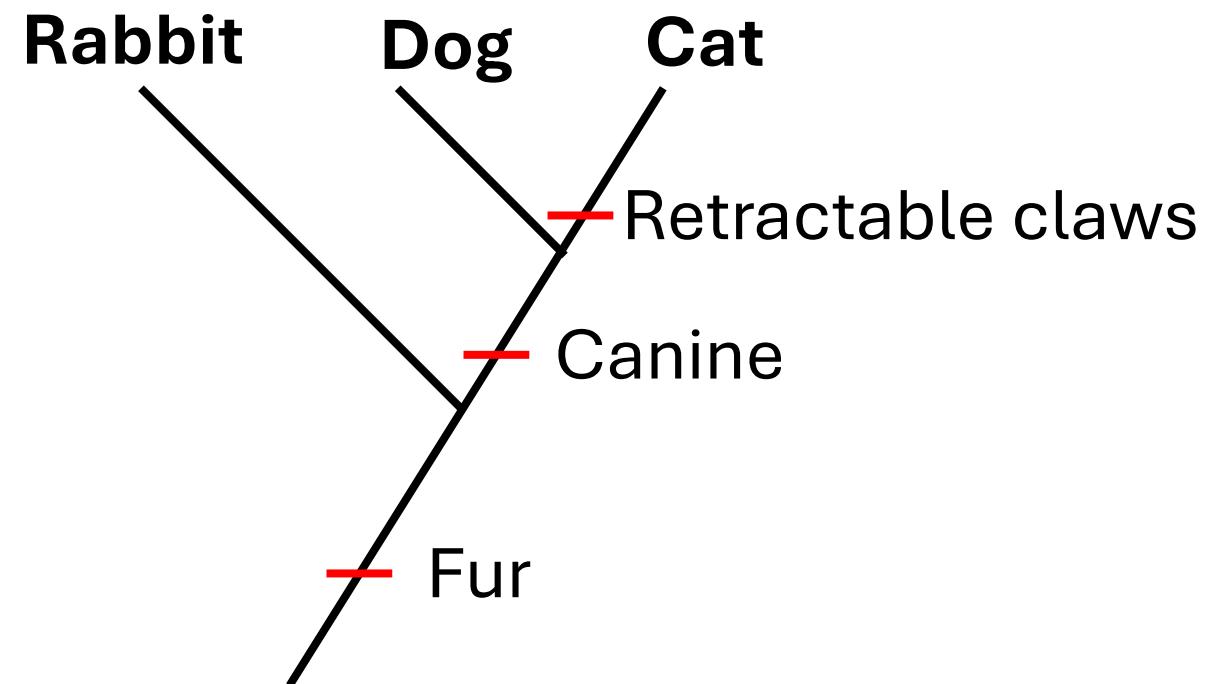
Derived characters	Species			
	Retractable claws	Rabbit	Dog	Cat
		0	0	1
		0	1	1
	Fur	1	1	1



To make a cladogram

Derived characters		Species			
		Rabbit	Dog	Cat	
		Retractable claws	0	0	1
		Canines	0	1	1
		Fur	1	1	1

2. Start the tree with the most common character near the root and each new branch is the evolution of a new character. On the left, place the species with the least shared characters.



Making a cladogram

Derived characters	Species			
	Rabbit	Dog	Cat	
	Retractable claws	0	0	1
	Canines	0	1	1
Fur	1	1	1	

Root = the most common character
Each Branch = evolution of a new character

Left = species with the least shared characters
Right = species with the most shared characters

TEACH CONCEPTS

Teach for Tomorrow

Contexts and Connect

Food / Science 1 Oct 2024

What if... genomics could safeguard our food supply?

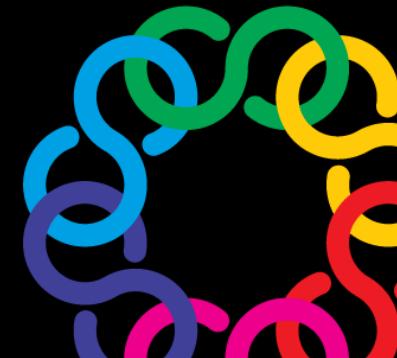
The rapid warming and periods of droughts as a result of climate change will impact our ability to grow food. Researchers at Plant and Food, AgResearch and the Bragato Research Institute are... [Read more](#) (VIDEO)

Science / Environment 28 Aug 2024

What if... genomics could help save an endangered species?

In 2018 the kākāpō became the first species in the world to have every individual's genome sequenced. How is the information being used today to help conservation? [Read more](#) (VIDEO)

<https://www.rnz.co.nz/programmes/what-if-genomics-in-aotearoa>


scipad™

genomics
aotearoa

thank you

www.genomics-aotearoa.org.nz

Heather Cooper
Jayashree Panjabi
Debbie McCreath
Polona Le Quesne
Stabej
Caroline Taripo-Keith
Nick Matzke

